Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38190666

RESUMO

The concept of Federated Learning (FL) is a distributed-based machine learning (ML) approach that trains its model using edge devices. Its focus is on maintaining privacy by transmitting gradient updates along with users' learning parameters to the global server in the process of training as well as preserving the integrity of data on the user-end of internet of medical things (IoMT) devices. Instead of a direct use of user data, the training which is performed on the global server is done on the parameters while the model modification is performed locally on IoMT devices. But the major drawback of this federated learning approach is its inability to preserve user privacy complete thereby resulting in gradients leakage. Thus, this study first presents a summary of the process of learning and further proposes a new approach for federated medical recommender system which employs the use of homomorphic cryptography to ensure a more privacy-preservation of user gradients during recommendations. The experimental results indicate an insignificant decrease with respect to the metrics of accuracy, however, a greater percentage of user-privacy is achieved. Further analysis also shows that performing computations on encrypted gradients at the global server scarcely has any impact on the output of the recommendation while guaranteeing a supplementary secure channel for transmitting user-based gradients back and forth the global server. The result of this analysis indicates that the performance of federated stochastic modification minimized gradient (FSMMG) algorithm is greatly increased at every given increase in the number of users and a good convergence is achieved as well. Also, experiments indicate that when compared against other existing techniques, the proposed FSMMG outperforms at 98.3% encryption accuracy.

2.
Front Public Health ; 10: 905265, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602165

RESUMO

Blockchain is a recent revolutionary technology primarily associated with cryptocurrencies. It has many unique features including its acting as a decentralized, immutable, shared, and distributed ledger. Blockchain can store all types of data with better security. It avoids third-party intervention to ensure better security of the data. Deep learning is another booming field that is mostly used in computer applications. This work proposes an integrated environment of a blockchain-deep learning environment for analyzing the Electronic Health Records (EHR). The EHR is the medical documentation of a patient which can be shared among hospitals and other public health organizations. The proposed work enables a deep learning algorithm act as an agent to analyze the EHR data which is stored in the blockchain. This proposed integrated environment can alert the patients by means of a reminder for consultation, diet chart, etc. This work utilizes the deep learning approach to analyze the EHR, after which an alert will be sent to the patient's registered mobile number.


Assuntos
Blockchain , Aprendizado Profundo , Algoritmos , Atenção à Saúde , Registros Eletrônicos de Saúde , Humanos
3.
Front Public Health ; 9: 737269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616709

RESUMO

Recommender systems offer several advantages to hospital data management units and patients with special needs. These systems are more dependent on the extreme subtle hospital-patient data. Thus, disregarding the confidentiality of patients with special needs is not an option. In recent times, several proposed techniques failed to cryptographically guarantee the data privacy of the patients with special needs in the diet recommender systems (RSs) deployment. In order to tackle this pitfall, this paper incorporates a blockchain privacy system (BPS) into deep learning for a diet recommendation system for patients with special needs. Our proposed technique allows patients to get notifications about recommended treatments and medications based on their personalized data without revealing their confidential information. Additionally, the paper implemented machine and deep learning algorithms such as RNN, Logistic Regression, MLP, etc., on an Internet of Medical Things (IoMT) dataset acquired via the internet and hospitals that comprises the data of 50 patients with 13 features of various diseases and 1,000 products. The product section has a set of eight features. The IoMT data features were analyzed with BPS and further encoded prior to the application of deep and machine learning-based frameworks. The performance of the different machine and deep learning methods were carried out and the results verify that the long short-term memory (LSTM) technique is more effective than other schemes regarding prediction accuracy, precision, F1-measures, and recall in a secured blockchain privacy system. Results showed that 97.74% accuracy utilizing the LSTM deep learning model was attained. The precision of 98%, recall, and F1-measure of 99% each for the allowed class was also attained. For the disallowed class, the scores were 89, 73, and 80% for precision, recall, and F1-measure, respectively. The performance of our proposed BPS is subdivided into two categories: the secured communication channel of the recommendation system and an enhanced deep learning approach using health base medical dataset that spontaneously identifies what food a patient with special needs should have based on their disease and certain features including gender, weight, age, etc. The proposed system is outstanding as none of the earlier revised works of literature described a recommender system of this kind.


Assuntos
Blockchain , Aprendizado Profundo , Internet das Coisas , Algoritmos , Gerenciamento de Dados , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...